45 research outputs found

    Mortality in Patients with Brainstem Cavernous Malformations

    Full text link
    OBJECTIVE Brainstem cavernous malformations (BSCM)-associated mortality has been reported up to 20% in patients managed conservatively, whereas postoperative mortality rates range from 0 to 1.9%. Our aim was to analyze the actual risk and causes of BSCM-associated mortality in patients managed conservatively and surgically based on our own patient cohort and a systematic literature review. METHODS Observational, retrospective single-center study encompassing all patients with BSCM that presented to our institution between 2006 and 2018. In addition, a systematic review was performed on all studies encompassing patients with BSCM managed conservatively and surgically. RESULTS Of 118 patients, 54 were treated conservatively (961.0 person years follow-up in total). No BSCM-associated mortality was observed in our conservatively as well as surgically managed patient cohort. Our systematic literature review and analysis revealed an overall BSCM-associated mortality rate of 2.3% (95% CI: 1.6-3.3) in 22 studies comprising 1,251 patients managed conservatively and of 1.3% (95% CI: 0.9-1.7) in 99 studies comprising 3,275 patients with BSCM treated surgically. CONCLUSION The BSCM-associated mortality rate in patients managed conservatively is almost as low as in patients treated surgically and much lower than in frequently cited reports, most probably due to the good selection nowadays in regard to surgery

    Impact of Long-Term Antithrombotic and Statin Therapy on the Clinical Outcome in Patients with Cavernous Malformations of the Central Nervous System: A Single-Center Case Series of 428 Patients

    Full text link
    INTRODUCTION Literature regarding the safety and efficacy of antithrombotic (antiplatelet or anticoagulant) therapy and statins in patients with cavernous malformations (CMs) of the central nervous system is sparse, resulting in uncertainty about its use in clinical practice. The aim of this study was to analyze the impact of antithrombotic therapy and statins on the risk of hemorrhage and focal neurological deficit in patients with CMs. METHODS The authors' institutional database was screened for all patients with CMs of the central nervous system treated at their institution between 2006 and 2018. Patients with radiological and/or histological diagnosis of CMs, clinical baseline characteristics, available patient's medication history, and follow-up data were included in this study. Time-to-event probability (hemorrhage or focal neurological deficit) as well as the number of events (hemorrhage or focal neurological deficit) during follow-up were assessed in patients who were categorized according to their medical treatment (antithrombotic therapy, statins, combined therapy, or no treatment). RESULTS Four hundred twenty-eight patients with CMs were eligible and included in the final analysis. Sixty-nine (16.1%) patients were on long-term antithrombotic therapy and 46 (10.6%) on long-term statins, of whom 31 patients were on a combination of both. The probability of experiencing first hemorrhage or focal neurological deficit was less likely in patients on antiplatelet therapy (HR 0.09, 95% CI 0.021-0.39, p = 0.001), anticoagulant therapy (HR 0.12, 95% CI 0.016-0.85, p = 0.034), or the combination thereof (HR 0.12, 95% CI 0.016-0.93, p = 0.043) compared to patients with no antithrombotic treatment. The number of hemorrhages and focal neurological deficits were significantly lower in patients on antithrombotic therapy compared to patients on no treatment during follow-up. In patients on statins alone, the time-to-event probability was comparable to that of patients on no treatment (HR 0.91, 95% CI 0.438-1.91, p = 0.812), and the number of events was similar to patients on no treatment. CONCLUSION The results of our study provide further evidence that antithrombotic therapy alone or in combination with statins in patients with CMs of the central nervous system does not increase the risk of hemorrhage or focal neurological deficit but, on the contrary, may have some benefit

    Multimodal anatomy of the human forniceal commissure

    Full text link
    Ambiguity surrounds the existence and morphology of the human forniceal commissure. We combine advanced in-vivo tractography, multidirectional ex-vivo fiber dissection, and multiplanar histological analysis to characterize this structure's anatomy. Across all 178 subjects, in-vivo fiber dissection based on the Human Connectome Project 7 T MRI data identifies no interhemispheric connections between the crura fornicis. Multidirectional ex-vivo fiber dissection under the operating microscope demonstrates the psalterium as a thin soft-tissue membrane spanning between the right and left crus fornicis, but exposes no commissural fibers. Multiplanar histological analysis with myelin and Bielchowsky silver staining, however, visualizes delicate cruciform fibers extending between the crura fornicis, enclosed by connective tissue, the psalterium. The human forniceal commissure is therefore much more delicate than previously described and presented in anatomical textbooks. This finding is consistent with the observed phylogenetic trend of a reduction of the forniceal commissure in non-human primates compared to non-primate eutherian mammals

    Anatomical phenotyping and staging of brain tumours

    Full text link
    Unlike other tumors, the anatomical extent of brain tumors is not objectified and quantified through staging. Staging systems are based on understanding the anatomical sequence of tumor progression and its relationship to histopathological dedifferentiation and survival. The aim of this study was to describe the spatiotemporal phenotype of the most frequent brain tumor entities, to assess the association of anatomical tumor features with survival probability and to develop a staging system for WHO grade 2 and 3 gliomas and glioblastoma. Anatomical phenotyping was performed on a consecutive cohort of 1000 patients with first diagnosis of a primary or secondary brain tumor. Tumor probability in different topographic, phylogenetic and ontogenetic parcellation units was assessed on preoperative MRI through normalization of the relative tumor prevalence to the relative volume of the respective structure. We analyzed the spatiotemporal tumor dynamics by cross-referencing preoperative against preceding and subsequent MRIs of the respective patient. The association between anatomical phenotype and outcome defined prognostically critical anatomical tumor features at diagnosis. Based on a hypothesized sequence of anatomical tumor progression, we developed a three-level staging system for WHO grade 2 and 3 gliomas and glioblastoma. This staging system was validated internally in the original cohort and externally in an independent cohort of 300 consecutive patients. While primary central nervous system lymphoma showed highest probability along white matter tracts, metastases enriched along terminal arterial flow areas. Neuroepithelial tumors mapped along all sectors of the ventriculocortical axis, while adjacent units were spared, consistent with a transpallial behavior within phylo-ontogenetic radial units. Their topographic pattern correlated with morphogenetic processes of convergence and divergence of radial units during phylo- and ontogenesis. While a ventriculofugal growth dominated in neuroepithelial tumors, a gradual deviation from this neuroepithelial spatiotemporal behavior was found with progressive histopathological dedifferentiation. The proposed three-level staging system for WHO grade 2 and 3 gliomas and glioblastoma correlated with the degree of histological dedifferentiation and proved accurate in terms of survival upon both internal and external validation. In conclusion, this study identified specific spatiotemporal phenotypes in brain tumors through topographic probability and growth pattern assessment. The association of anatomical tumor features with survival defined critical steps in the anatomical sequence of neuroepithelial tumor progression, based on which a staging system for WHO grade 2 and 3 gliomas and glioblastoma was developed and validated

    Postoperative progression of brain metastasis is associated with seizures

    Full text link
    Seizures in patients with brain metastases have an impact on morbidity and quality of life. The influence of tumor growth on the risk of seizures in these patients is not well defined. In this cohort study, we evaluated adult patients from the University Hospital of Zurich following resection of brain metastases from solid tumors, with or without preoperative seizures, at 3, 6, 9, and 12 months postoperatively. Brain magnetic resonance imaging was assessed for tumor progression using the Response Assessment in Neuro-Oncology criteria. The quarterly risk of unprovoked seizures was modeled with mixed effects logistic regression. We analyzed 444 time frames in 220 patients. Progression of brain metastases was independently associated with seizures during the respective quarterly follow-up period (odds ratio = 3.9, 95% confidence interval = 1.3-11.3, p = .014). Complete resection of brain metastases was associated with a lower risk of seizures (odds ratio = .2, 95% confidence interval = .04-.7, p = .015). Postoperative progression of brain metastases quadrupled the risk of seizures; therefore, vigorous follow-up may be useful to identify tumor progression and gauge the risk of seizures. The identification of patients at high seizure risk may have implications for treatment decisions and influence aspects of daily life. Breakthrough seizures may indicate brain metastases progression

    Clinical potential of automated convolutional neural network-based hematoma volumetry after aneurysmal subarachnoid hemorrhage

    Full text link
    Objectives Cerebrospinal fluid hemoglobin has been positioned as a potential biomarker and drug target for aneurysmal subarachnoid hemorrhage-related secondary brain injury (SAH-SBI). The maximum amount of hemoglobin, which may be released into the cerebrospinal fluid, is defined by the initial subarachnoid hematoma volume (ISHV). In patients without external ventricular or lumbar drain, there remains an unmet clinical need to predict the risk for SAH-SBI. The aim of this study was to explore automated segmentation of ISHV as a potential surrogate for cerebrospinal fluid hemoglobin to predict SAH-SBI. Methods This study is based on a retrospective analysis of imaging and clinical data from 220 consecutive patients with aneurysmal subarachnoid hemorrhage collected over a five-year period. 127 annotated initial non-contrast CT scans were used to train and test a convolutional neural network to automatically segment the ISHV in the remaining cohort. Performance was reported in terms of Dice score and intraclass correlation. We characterized the associations between ISHV and baseline cohort characteristics, SAH-SBI, ventriculoperitoneal shunt dependence, functional outcome, and survival. Established clinical (World Federation of Neurosurgical Societies, Hunt & Hess) and radiological (modified Fisher, Barrow Neurological Institute) scores served as references. Results A strong volume agreement (0.73 Dice, range 0.43 - 0.93) and intraclass correlation (0.89, 95% CI, 0.81-0.94) were shown. While ISHV was not associated with the use of antithrombotics or cardiovascular risk factors, there was strong evidence for an association with a lower Glasgow Coma Scale at hospital admission. Aneurysm size and location were not associated with ISHV, but the presence of intracerebral or intraventricular hemorrhage were independently associated with higher ISHV. Despite strong evidence for a positive association between ISHV and SAH-SBI, the discriminatory ability of ISHV for SAH-SBI was insufficient. The discriminatory ability of ISHV was, however, higher regarding ventriculoperitoneal shunt dependence and functional outcome at three-months follow-up. Multivariate survival analysis provided strong evidence for an independent negative association between survival probability and both ISHV and intraventricular hemorrhage. Conclusions The proposed algorithm demonstrates strong performance in volumetric segmentation of the ISHV on the admission CT. While the discriminatory ability of ISHV for SAH-SBI was similar to established clinical and radiological scores, it showed a high discriminatory ability for ventriculoperitoneal shunt dependence and functional outcome at three-months follow-up

    MyD88-TLR4-dependent choroid plexus activation precedes perilesional inflammation and secondary brain edema in a mouse model of intracerebral hemorrhage

    Full text link
    Background: The functional neurological outcome of patients with intracerebral hemorrhage (ICH) strongly relates to the degree of secondary brain injury (ICH-SBI) evolving within days after the initial bleeding. Different mechanisms including the incitement of inflammatory pathways, dysfunction of the blood–brain barrier (BBB), activation of resident microglia, and an influx of blood-borne immune cells, have been hypothesized to contribute to ICH-SBI. Yet, the spatiotemporal interplay of specific inflammatory processes within different brain compartments has not been sufficiently characterized, limiting potential therapeutic interventions to prevent and treat ICH-SBI. Methods: We used a whole-blood injection model in mice, to systematically characterized the spatial and temporal dynamics of inflammatory processes after ICH using 7-Tesla magnetic resonance imaging (MRI), spatial RNA sequencing (spRNAseq), functional BBB assessment, and immunofluorescence average-intensity-mapping. Results: We identified a pronounced early response of the choroid plexus (CP) peaking at 12–24 h that was characterized by inflammatory cytokine expression, epithelial and endothelial expression of leukocyte adhesion molecules, and the accumulation of leukocytes. In contrast, we observed a delayed secondary reaction pattern at the injection site (striatum) peaking at 96 h, defined by gene expression corresponding to perilesional leukocyte infiltration and correlating to the delayed signal alteration seen on MRI. Pathway analysis revealed a dependence of the early inflammatory reaction in the CP on toll-like receptor 4 (TLR4) signaling via myeloid differentiation factor 88 (MyD88). TLR4 and MyD88 knockout mice corroborated this observation, lacking the early upregulation of adhesion molecules and leukocyte infiltration within the CP 24 h after whole-blood injection. Conclusions: We report a biphasic brain reaction pattern after ICH with a MyD88-TLR4-dependent early inflammatory response of the CP, preceding inflammation, edema and leukocyte infiltration at the lesion site. Pharmacological targeting of the early CP activation might harbor the potential to modulate the development of ICH-SBI

    Blood oxygenation-level dependent cerebrovascular reactivity imaging as strategy to monitor CSF-hemoglobin toxicity

    Full text link
    Objectives: Cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) may be one of the main drivers of secondary brain injury after aneurysmal subarachnoid hemorrhage (aSAH). Haptoglobin scavenging of CSF-Hb has been shown to mitigate cerebrovascular disruption. Using digital subtraction angiography (DSA) and blood oxygenation-level dependent cerebrovascular reactivity imaging (BOLD-CVR) the aim was to assess the acute toxic effect of CSF-Hb on cerebral blood flow and autoregulation, as well as to test the protective effects of haptoglobin. Methods: DSA imaging was performed in eight anesthetized and ventilated sheep (mean weight: 80.4 kg) at baseline, 15, 30, 45 and 60 minutes after infusion of hemoglobin (Hb) or co-infusion with haptoglobin (Hb:Haptoglobin) into the left lateral ventricle. Additionally, 10 ventilated sheep (mean weight: 79.8 kg) underwent BOLD-CVR imaging to assess the cerebrovascular reserve capacity. Results: DSA imaging did not show a difference in mean transit time or cerebral blood flow. Whole-brain BOLD-CVR compared to baseline decreased more in the Hb group after 15 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.01 vs -0.01 ± 0.02) and remained diminished compared to Hb:Haptoglobin group after 30 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.01 vs 0.0 ± 0.01), 45 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.01 vs 0.01 ± 0.02) and 60 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.02 vs 0.01 ± 0.01). Conclusion: It is demonstrated that CSF-Hb toxicity leads to rapid cerebrovascular reactivity impairment, which is blunted by haptoglobin co-infusion. BOLD-CVR may therefore be further evaluated as a monitoring strategy for CSF-Hb toxicity after aSAH

    The HeMoVal study protocol: a prospective international multicenter cohort study to validate cerebrospinal fluid hemoglobin as a monitoring biomarker for aneurysmal subarachnoid hemorrhage related secondary brain injury.

    Get PDF
    INTRODUCTION Preclinical studies provided a strong rationale for a pathophysiological link between cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) and secondary brain injury after subarachnoid hemorrhage (SAH-SBI). In a single-center prospective observational clinical study, external ventricular drain (EVD) based CSF-Hb proved to be a promising biomarker to monitor for SAH-SBI. The primary objective of the HeMoVal study is to prospectively validate the association between EVD based CSF-Hb and SAH-SBI during the first 14 days post-SAH. Secondary objectives include the assessment of the discrimination ability of EVD based CSF-Hb for SAH-SBI and the definition of a clinically relevant range of EVD based CSF-Hb toxicity. In addition, lumbar drain (LD) based CSF-Hb will be assessed for its association with and discrimination ability for SAH-SBI. METHODS HeMoVal is a prospective international multicenter observational cohort study. Adult patients admitted with aneurysmal subarachnoid hemorrhage (aSAH) are eligible. While all patients with aSAH are included, we target a sample size of 250 patients with EVD within the first 14 day after aSAH. Epidemiologic and disease-specific baseline measures are assessed at the time of study inclusion. In patients with EVD or LD, each day during the first 14 days post-SAH, 2 ml of CSF will be sampled in the morning, followed by assessment of the patients for SAH-SBI, co-interventions, and complications in the afternoon. After 3 months, a clinical follow-up will be performed. For statistical analysis, the cohort will be stratified into an EVD, LD and full cohort. The primary analysis will quantify the strength of association between EVD based CSF-Hb and SAH-SBI in the EVD cohort based on a generalized additive model. Secondary analyses include the strength of association between LD based CSF-Hb and SAH-SBI in the LD cohort based on a generalized additive model, as well as the discrimination ability of CSF-Hb for SAH-SBI based on receiver operating characteristic (ROC) analyses. DISCUSSION We hypothesize that this study will validate the value of CSF-Hb as a biomarker to monitor for SAH-SBI. In addition, the results of this study will provide the potential base to define an intervention threshold for future studies targeting CSF-Hb toxicity after aSAH. STUDY REGISTRATION ClinicalTrials.gov Identifier NCT04998370 . Date of registration: August 10, 2021

    The HeMoVal study protocol: a prospective international multicenter cohort study to validate cerebrospinal fluid hemoglobin as a monitoring biomarker for aneurysmal subarachnoid hemorrhage related secondary brain injury

    Full text link
    Introduction: Preclinical studies provided a strong rationale for a pathophysiological link between cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) and secondary brain injury after subarachnoid hemorrhage (SAH-SBI). In a single-center prospective observational clinical study, external ventricular drain (EVD) based CSF-Hb proved to be a promising biomarker to monitor for SAH-SBI. The primary objective of the HeMoVal study is to prospectively validate the association between EVD based CSF-Hb and SAH-SBI during the first 14 days post-SAH. Secondary objectives include the assessment of the discrimination ability of EVD based CSF-Hb for SAH-SBI and the definition of a clinically relevant range of EVD based CSF-Hb toxicity. In addition, lumbar drain (LD) based CSF-Hb will be assessed for its association with and discrimination ability for SAH-SBI. Methods: HeMoVal is a prospective international multicenter observational cohort study. Adult patients admitted with aneurysmal subarachnoid hemorrhage (aSAH) are eligible. While all patients with aSAH are included, we target a sample size of 250 patients with EVD within the first 14 day after aSAH. Epidemiologic and disease-specific baseline measures are assessed at the time of study inclusion. In patients with EVD or LD, each day during the first 14 days post-SAH, 2 ml of CSF will be sampled in the morning, followed by assessment of the patients for SAH-SBI, co-interventions, and complications in the afternoon. After 3 months, a clinical follow-up will be performed. For statistical analysis, the cohort will be stratified into an EVD, LD and full cohort. The primary analysis will quantify the strength of association between EVD based CSF-Hb and SAH-SBI in the EVD cohort based on a generalized additive model. Secondary analyses include the strength of association between LD based CSF-Hb and SAH-SBI in the LD cohort based on a generalized additive model, as well as the discrimination ability of CSF-Hb for SAH-SBI based on receiver operating characteristic (ROC) analyses. Discussion: We hypothesize that this study will validate the value of CSF-Hb as a biomarker to monitor for SAH-SBI. In addition, the results of this study will provide the potential base to define an intervention threshold for future studies targeting CSF-Hb toxicity after aSAH
    corecore